2002 SCHEME

USN						EE	EE74
					1 1	ļ	

Seventh Semester B.E. Degree Examination, Dec.09-Jan.10 High Voltage Engineering

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Briefly explain the need of generation of high voltage in the laboratory. (04 Marks)
 - b. What are electronegative gases? Derive the expression for criterion of breakdown in electronegative gases assuming current growth equation. (12 Marks)
 - c. In an experiment in a certain gas it was found that the steady state current is 5.5 x 10⁻⁸ Amp at 8 KV at a distance of 0.4cm between plane electrodes. Keeping the field constant and reducing the distance to 0.1cm results in a current of 5.5 x 10⁻⁹ Amp. Calculate the Townsend's primary ionization coefficient. Neglect secondary ionization effects. (04 Marks)
- 2 a. What is corona discharge? Explain clearly the breakdown in non-uniform field. (06 Marks)
 - b. What is electroconvection? Explain liquid breakdown based on electroconvection. (06 Marks)
 - c. Explain Thermal breakdown in solid dielectrics. How this mechanism is more significant than the other mechanisms? (08 Marks)
- 3 a. Define ripple voltage. Show that the ripple voltage in a rectifier circuit depends upon the load current and the circuit parameters. (06 Marks)
 - b. A ten stage Cockcrot Walton circuit has all capacitors of 0.06 μF. The secondary voltage of the supply transformer is 100 KV at a frequency of 150Hz. If the load current is 1mA, determine: i) Voltage regulation; ii) The ripple; iii) The optimum number of stages for maximum output voltage.
 - c. What is the principle of operation of a resonant transformer? What are its advantages over the cascade connected transformer? (08 Marks)
- 4 a. Derive an expression of the output of a single stage impulse generator shown in Fig.4(a).

 (10 Marks)

Fig.4(a).

b. Define the standard lighting Impulse current wave.

- (04 Marks)
- c. An impulse current generator is rated for 60 KW s. The parameters of the circuit are $C = 53 \mu\text{F}$, $L = 1.47 \mu\text{H}$ and the dynamic resistance $= 0.0156 \Omega$. Determine the peak value of the current and the time to front and time to tail of the current wave form.

(06 Marks)

- 5 a. Explain the Chubb Fortescue method for HVAC measurement.
 b. Describe the generating voltmeter used for measuring high d.c. voltages.
 (10 Marks)
- 6 a. Explain how a sphere gap can be used to measure the peak value of voltages. What are the factors that influence such voltage measurements?

 (12 Marks)
 - b. Explain Potential divider for very high impulse voltages and fast rising pulses. (08 Marks)
- a. Explain the high voltage Schering bridge for tan δ and capacitance measurement. (10 Marks)
 b. What are different power frequency tests done on insulators? Mention the procedure for testing.
- 8 Write short notes on any Four:
 - i) Paschen's law and its significance.
 - ii) Trigatron gap.
 - iii) Series resistance micro ammeter.
 - iv) Klydamograph.
 - v) Impulse testing of transformers.

(20 Marks)

2 of 2